Quickstart (Python)
Build scripts that navigate the web using natural language instructions

This guide shows you how to use Stagehand with Steel browsers to create scripts that can interact with websites using natural language commands. We'll build a simple automation that extracts data from Hacker News and demonstrates search functionality.
Prerequisites
Ensure you have the following:
-
Python 3.8 or higher
-
A Steel API key (sign up here)
-
An OpenAI API key (get one here)
Step 1: Set up your environment
First, create a project directory and install the required packages:
# Create a project directory
mkdir steel-stagehand-starter
cd steel-stagehand-starter
# Install required packages
pip install steel-sdk stagehand pydantic python-dotenv
Create a .env
file with your API keys:
# .env
STEEL_API_KEY=your_steel_api_key_here
OPENAI_API_KEY=your_openai_api_key_here
Step 2: Create your data models
import asyncio
import os
from dotenv import load_dotenv
from pydantic import BaseModel, Field
from steel import Steel
from stagehand import StagehandConfig, Stagehand
# Load environment variables
load_dotenv()
# Get API keys from environment
STEEL_API_KEY = os.getenv("STEEL_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# Define data models for structured extraction
class Story(BaseModel):
title: str = Field(..., description="Story title")
rank: int = Field(..., description="Story rank number")
class Stories(BaseModel):
stories: list[Story] = Field(..., description="List of top stories")
These models will help Stagehand extract structured data from web pages.
Step 3: Create a Steel browser session
Add the session creation logic to connect with Steel's cloud browsers:
async def main():
print("๐ Steel + Stagehand Automation")
print("=" * 50)
# Initialize Steel client
client = Steel(steel_api_key=STEEL_API_KEY)
# Create a new browser session
session = client.sessions.create()
print("โ
Steel browser session created!")
print(f"View live session at: {session.session_viewer_url}")
When you run this, you'll see a URL where you can watch your browser session live.
Step 4: Configure and connect Stagehand
Now we'll connect Stagehand to your Steel session:
# Configure Stagehand to use Steel session
config = StagehandConfig(
env="LOCAL",
model_name="gpt-4o-mini",
model_api_key=OPENAI_API_KEY,
local_browser_launch_options={
"cdp_url": f"{session.websocket_url}&apiKey={STEEL_API_KEY}",
}
)
# Initialize Stagehand
stagehand = Stagehand(config)
await stagehand.init()
print("๐ค Stagehand connected to Steel browser")
This connects Stagehand to your Steel browser session via Chrome DevTools Protocol.
Step 5: Navigate and extract data
Add the automation logic to navigate to a website and extract information:
try:
# Navigate to Hacker News
print("๐ฐ Navigating to Hacker News...")
await stagehand.page.goto("https://news.ycombinator.com")
# Extract top stories using AI
print("๐ Extracting top stories...")
stories_data = await stagehand.page.extract(
"Extract the titles and ranks of the first 5 stories on the page",
schema=Stories
)
# Display results
print("\n๐ Top 5 Hacker News Stories:")
for story in stories_data.stories:
print(f"{story.rank}. {story.title}")
print("\nโ
Automation completed successfully!")
except Exception as error:
print(f"โ Error during automation: {error}")
You'll see the extracted story titles and rankings printed to your console.
Step 6: Add proper cleanup
Always clean up your resources when finished:
finally:
# Close Stagehand
if stagehand:
await stagehand.close()
# Release Steel session
if session and client:
client.sessions.release(session.id)
print("๐งน Resources cleaned up")
# Run the automation
if __name__ == "__main__":
asyncio.run(main())
Step 7: Run your automation
Execute your script:
python main.py
You should see output like this:
๐ Steel + Stagehand Automation
==================================================
โ
Steel browser session created!
View live session at: https://app.steel.dev/v1/sessions/uuid
๐ค Stagehand connected to Steel browser
๐ฐ Navigating to Hacker News...
๐ Extracting top stories...
๐ Top 5 Hacker News Stories:
1. Ask HN: What are you working on this week?
2. Show HN: I built a tool to analyze my GitHub contributions
3. The future of web development
4. Why I switched from React to Vue
5. Building scalable microservices with Go
โ
Automation completed successfully!
๐งน Resources cleaned up
Complete Example
Here's the complete script that puts all steps together:
"""
AI-powered browser automation using Stagehand with Steel browsers.
https://github.com/steel-dev/steel-cookbook/tree/main/examples/steel-stagehand-python-starter
"""
import asyncio
import os
from dotenv import load_dotenv
from pydantic import BaseModel, Field
from steel import Steel
from stagehand import StagehandConfig, Stagehand
# Load environment variables
load_dotenv()
# Replace with your own API keys
STEEL_API_KEY = os.getenv("STEEL_API_KEY") or "your-steel-api-key-here"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") or "your-openai-api-key-here"
# Define Pydantic models for structured data extraction
class Story(BaseModel):
title: str = Field(..., description="Story title")
rank: int = Field(..., description="Story rank number")
class Stories(BaseModel):
stories: list[Story] = Field(..., description="List of top stories")
async def main():
print("๐ Steel + Stagehand Python Starter")
print("=" * 60)
if STEEL_API_KEY == "your-steel-api-key-here":
print("โ ๏ธ WARNING: Please replace 'your-steel-api-key-here' with your actual Steel API key")
print(" Get your API key at: https://app.steel.dev/settings/api-keys")
return
if OPENAI_API_KEY == "your-openai-api-key-here":
print("โ ๏ธ WARNING: Please replace 'your-openai-api-key-here' with your actual OpenAI API key")
print(" Get your API key at: https://platform.openai.com/")
return
session = None
stagehand = None
client = None
try:
print("\nCreating Steel session...")
# Initialize Steel client with the API key from environment variables
client = Steel(steel_api_key=STEEL_API_KEY)
session = client.sessions.create(
# === Basic Options ===
# use_proxy=True, # Use Steel's proxy network (residential IPs)
# proxy_url='http://...', # Use your own proxy (format: protocol://username:password@host:port)
# solve_captcha=True, # Enable automatic CAPTCHA solving
# session_timeout=1800000, # Session timeout in ms (default: 5 mins)
# === Browser Configuration ===
# user_agent='custom-ua', # Set a custom User-Agent
)
print(f"\033[1;93mSteel Session created!\033[0m")
print(f"View session at \033[1;37m{session.session_viewer_url}\033[0m")
config = StagehandConfig(
env="LOCAL",
model_name="gpt-4.1-mini",
model_api_key=OPENAI_API_KEY,
# Connect to Steel session via CDP
local_browser_launch_options={
"cdp_url": f"{session.websocket_url}&apiKey={STEEL_API_KEY}",
}
)
stagehand = Stagehand(config)
print("Initializing Stagehand...")
await stagehand.init()
print("Connected to browser via Stagehand")
print("Navigating to Hacker News...")
await stagehand.page.goto("https://news.ycombinator.com")
print("Extracting top stories using AI...")
stories_data = await stagehand.page.extract(
"Extract the titles and ranks of the first 5 stories on the page",
schema=Stories
)
print("\n\033[1;92mTop 5 Hacker News Stories:\033[0m")
for story in stories_data.stories:
print(f"{story.rank}. {story.title}")
print("\n\033[1;92mAutomation completed successfully!\033[0m")
except Exception as error:
print(f"Error during automation: {error}")
import traceback
traceback.print_exc()
finally:
if stagehand:
print("Closing Stagehand...")
try:
await stagehand.close()
except Exception as error:
print(f"Error closing Stagehand: {error}")
if session and client:
print("Releasing Steel session...")
try:
client.sessions.release(session.id)
print("Steel session released successfully")
except Exception as error:
print(f"Error releasing session: {error}")
# Run the main function
if __name__ == "__main__":
asyncio.run(main())
Advanced Usage Examples
Custom Data Extraction Schema
const ProductSchema = z.object({
products: z.array(
z.object({
name: z.string(),
price: z.string(),
rating: z.number().optional(),
inStock: z.boolean(),
})
),
});
const productData = await stagehand.page.extract({
instruction: "extract product information from this e-commerce page",
schema: ProductSchema,
});
Complex Actions with Natural Language
// Fill out a form using natural language
await stagehand.page.act(
"fill out the contact form with name 'John Doe', email 'john@example.com', and message 'Hello!'"
);
// Navigate through multi-step processes
await stagehand.page.act(
"click on the 'Sign Up' button and then fill out the registration form"
);
// Handle dynamic content
await stagehand.page.act(
"wait for the page to load completely, then click on the first product"
);
Next Steps
Now that you have a working Stagehand + Steel automation, try these enhancements:
-
Custom data extraction: Create your own Pydantic models for different websites
-
Complex interactions: Use
stagehand.page.act()
for clicking, typing, and navigation -
Multiple pages: Navigate through multi-step workflows
-
Error handling: Add retry logic and better error management
For more advanced features, check out:
-
Stagehand documentation for natural language automation
-
Steel API documentation for session management options
-
Steel GitHub examples for more integration patterns